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Abstract

The effects of both horizontal and vertical hydrodynamic and thermal heterogeneity, on the onset of convection in a horizontal layer
of a saturated bidisperse porous medium uniformly heated from below, are studied analytically using linear stability theory for the case
of weak heterogeneity. It is found that the effect of such heterogeneity on the critical value of the Rayleigh number Ra based on mean
properties is of second order if the properties vary in a piecewise constant or linear fashion. The effects of horizontal heterogeneity and
vertical heterogeneity are then comparable once the aspect ratio is taken into account, and to a first approximation are independent. The
thermal heterogeneity of the p-phase can be quite significant when the thermal diffusivity of that phase is large relative to that of the

f-phase.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of the onset of convection in a horizontal
layer of fluid heated uniformly from below is commonly
called the Rayleigh-Bénard problem in the case of a fluid
clear of solid material and the Horton—Rogers—Lapwood
(HRL) problem for the case of a fluid-saturated porous
medium. A feature of such convection is that it generally
appears in the form of cells whose horizontal dimension
is of the same order as their vertical dimension. The critical
dimensionless wavenumber «. in the linear stability analysis
turns out to have a value of about 3 in most cases. In the
HRL problem with conducting impervious boundaries
a. = n, a value that corresponds to rolls of square cross-
section. An exception occurs in the case of “insulating”
(with respect to perturbation heat flux) boundaries. For
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this case a. = 0, so that the convection occurs as a single
cell.

In recent discussions about the effect of heterogeneity
(of either permeability or thermal conductivity or both)
on convection in a porous medium it has been noted that
in the case of strong heterogeneity there can be dramatic
effects [1-3]. Even in the case of weak heterogeneity it is
of interest to investigate the combined effects of vertical
heterogeneity (property variation in the vertical direction,
including horizontal layering as a special case) and hori-
zontal heterogeneity. This is the subject of the analysis of
Nield and Kuznetsov [4]. The survey of the effects of heter-
ogeneity in Nield and Bejan [5] indicates this topic had not
been considered previously. In their analytical study Nield
and Kuznetsov [4] found that the effect of such heterogene-
ity on the critical value of the Rayleigh number Ra based
on mean properties is of second order if the properties vary
in a piecewise constant or linear fashion. The effects of hor-
izontal heterogeneity and vertical heterogeneity are then
comparable and to a first approximation are independent.
For the case of conducting impermeable top and bottom
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Nomenclature

A aspect ratio (height to width)

c specific heat at constant pressure

d height of the enclosure

Daf d

g gravity

h inter-phase heat transfer coefficient (incorporat-
ing the specific area)

H inter-phase heat transfer parameter, 2 d)k

kK overall (effective) thermal conductmty

ky thermal conductivity of the f~phase

k;‘, thermal conductivity of the p-phase

kro mean value of k7 (x*, ")

kyo mean value of &, (x*, ")

ky Ky ko

ky k,/kpo

K, permeablhty ratio, ﬁ—"“

K permeability

Ko mean value of K7 (x*,y*)

Ko mean value of K (x*, y")

Ky Kj/Kp

K,  K;/Kw

L enclosure width

. p (pe)Kro

P dimensionless pressure, e

p pressure .

Ra;  Rayleigh number, 2 F%Q&Sgimd

S parameter defined by Eq. (48)

I time

t dimensionless time, 7 ;“ i

Ty temperature in the f~-phase

T, temperature in the p-phase

T temperature at the lower boundary

T, temperature at the upper boundary

T volume average of the temperature over the
fluid, defined by Eq. (3)

Ty reference temperature, 7} — Ty

us fiir)ngnsionless horizontal velocity in the f-phase,
Z’k/; 7

u, d(ime[?sionless horizontal velocity in the p-phase,
(oL

u" dimensional horizontal velocity

f f-phase

v vector of Darcy velocity, (u*,v")

vf fiir)ngnsionless vertical velocity in the f-phase,
pe)rd
ko

v, dimeapsionless vertical velocity in the p-phase,

pe)y *

(1=¢)kpo Up

v* dimensional vertical velocity

X dimensionless horizontal coordinate, x*/d

X horizontal coordinate

y dimensionless upward vertical coordinate, y*/d

" upward vertical coordinate

Greek symbols

o thermal diffusivity ratio, /,zf (‘: Eﬁ 2;

p modified thermal diffusivity ratio, U;}K(i&@

Zf volumetric thermal expansion coefficient of the
fluid

V modified thermal conductivity ratio, (lf/;f)ok -

& porosity in the p-phase rho,

0, dimensionless temperature in the f-phase, T] T,

0, dimensionless temperature in the p-phase, ;}7;:

or perturbation quality defined by Eq. (24)

0, perturbation quality defined by Eq. (24)

O parameter defined by Eq. (18)

i effective viscosity of the porous medium

OF density of the fluid )

of inter-phase momentum transfer parameter, *KT’O

¢ volume fraction of the f~-phase

v streamfunction in the f-phase, defined by Eq.
(14)

v, streamfunction in the p-phase, defined by Eq.
(14)

Y, perturbation quality defined by Eq. (24)
¥, perturbation quality defined by Eq. (24)

Subscripts

p p-phase

Superscrlpt
dimensional variable

boundaries and a square box, the effects of permeability
heterogeneity and conductivity permeability each cause a
reduction in the critical value of Ra, while for the case of
a tall box there can be either a reduction or an increase.
It was found by Nield and Kuznetsov [6] that in the case
of a shallow box with constant-flux top and bottom bound-
aries there can be either a reduction of increase in the crit-
ical value of the Rayleigh number.

In the present paper the analysis of Nield and Kuznet-
sov [4] is extended in various ways. First, the momentum

equation is extended from the Darcy to the Brinkman
model. Second, the effect of local thermal non-equilibrium
is included. Third, at the same time an extension is made
from a regular porous medium to a bidisperse porous med-
ium, or BDPM (a porous medium in which the “solid”
phase is itself a porous medium), illustrated in Fig. la,
using a two-velocity as well as a two-temperature model.
At each stage of the extension the complexity of the
analysis is increased. In order to obtain significant results
it is necessary to use a second order Galerkin expansion,
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Fig. 1. (a) Conceptual diagram of a bidisperse porous medium and (b) schematic diagram of the problem (the walls are also assumed to be stress-free).

rather than just a first order one. In the case of trial func-
tions involving two coordinates that means four trial func-
tions for each primary dependent variable, and there are
four such variables for the two-velocity and two-tempera-
ture model. Hence the analysis involves the algebraic
expansion of a determinant of order 16. An algorithm
has been developed to handle determinants of such large
size.

The present paper may also be regarded as an extension
of the analysis of Nield and Kuznetsov [7] from the homo-
geneous case to the heterogeneous case. Further informa-
tion about heat transfer in bidisperse porous media can
be found in the review by Nield and Kuznetsov [8]. Other
references to papers on convection in heterogeneous por-
ous media can be found in [4].

At the outset we have made some simplifications. For
strong heterogeneity it is convenient to work in terms of
heterogeneity of log permeability (or log hydraulic conduc-
tivity), but in a study of weak heterogeneity this would just
complicate the analysis. For a similar reason, we have not
considered random fields. Our assumption of weak hetero-
geneity allows us to work in terms of approximations
involving small quantities, and we work to second order
in these.

2. Analysis

We consider a two-dimensional rectangular enclosure
(depth d, width L) occupied by a BDPM heated uniformly
from below, with applied temperatures 77 and 7, at the
lower boundary (y*=0) and the upper boundary
(y* =d), respectively. This is shown schematically in
Fig. 1b. Thus d is the depth of the layer. (The asterisks
denote dimensional variables.) The equations of continuity
(expressing conservation of mass) for the velocity compo-
nents in the two phases are

6u’;
Ox*

Ox*

We

% I

ay* - Y ( )
ov*

—L=0. 2

= )

note that in the traditional Darcy formulation the pres-

sure is an intrinsic quantity, i.e. it is the pressure in the
fluid. We recognize that in a BDPM the fluid occupies all
of the f~phase (the macropore portion) and a fraction of

the
We

p-phase (the micropore portion of the porous phase).
denote the volume fraction of the f~phase by ¢ (some-

thing that in a regular porous medium would be called the
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porosity) and the porosity in the p-phase by ¢. Thus 1 — ¢
is the volume fraction of the p-phase, and the volume frac-
tion of the BDPM occupied by the fluid is ¢ + (1 — ¢)e.
The volume average of the temperature over the fluid is

T+ (1 — ¢)eT,
g+ (1—¢)e

The drag force (per unit volume) balances the gradient of
the excess pressure over hydrostatic. Our basic hypothesis
is that in a BDPM the drag is increased by an amount
{(v; —v,) for the f-phase and decreased by the same
amount for the p-phase.

Within the enclosure the permeability is K*(x*,»*) and
the overall (effective) thermal conductivity is k*( ).
Accordingly, we write the momentum equations as

(3)

gi’ - [5? W, — L — ) + RV, (4)
% - ‘1% ty = {(u, = up) + iV, )
2‘;’ _ 15; v = L} — v}) + BV20; + ppgB(Ty — To), (6)
2‘;’:_—%17— (v —v)-l—,uVU +ngﬁ(T =To). (7)

We have simplified the equations by assuming that ji, and
I, are equal, so the subscripts on jt can be dropped. Here
pr is the density of the fluid, ﬁ is the volumetric thermal
expansion coefficient of the fluid, and 7j is a reference
temperature.
The thermal energy equations are taken as

o7 « g2 s « .

¢(pc)f or +¢(pc)f VT ¢k_fv Tf+h(Tp_Tf)7

(®)

or;
(I =@)(pc), az* + (1= ¢)(pc),v, - VT,
= (1= Q) VT, +h(T; — T}). (9)

Here ¢ denotes the specific heat at constant pressure, k™ de-
notes the thermal conductivity, and /% is an inter-phase heat
transfer coefficient (incorporating the specific area).

In order to simplify the following analysis, on the right-
hand side of Eq. (8) the terms involving the partial deriva-
tives of k; with respect to the spatial coordinates have been
dropped. In accordance with the assumption of weak het-
erogeneity, it is assumed that the variation of k. over the
enclosure is small compared with the mean Value of k. It
can be shown that this approximation has no effect on
the results presented in this paper provided that & is a lin-
ear function of the spatial variables considered separately.
A similar approximation involving &, has been made in Eq.
(9). A similar assumption about the variation of the perme-
ability is made below.

We define Ky, K, kg and k,, as the mean values of
K}, K, k; and k,, respectively, and write

K;=K;/Kn, K,=K,/Ky by = K ko

(10)

k= ke Jkepo,

We introduce dimensionless variables as follows:

* (’Oc)f 2 * kf:u

(", ") = d(x,), t'zﬁdh P:mpa (11)
ooy Pk s (1= )k,
05:07) = g ). (6 5) =0 ),
(12)
Ty = (T = T)0; + Tu, T =(Ty—Ty)0,+ T (13)

We take the reference temperature 7, as 7, — T,. We also
introduce the stream functions /rand ,, defined so that

al//f a‘//f Gwp alpp
= = — = —— == . 14
uf ay vf ax ) uﬁ ay ’ UP ax ( )
We define a Rayleigh number Rayand a Darcy number Day
based on properties in the f-phase by

prgB(T1 — TW)K sod

Ra, = , 15a

1= k] (o), (132)
BK ro

Da, =—. 15b

ay 1 d2 ( )

Elimination of the pressure from Egs. (4)—(7), on the
assumption that the maximum variation of permeability
in the box is a small fraction of the mean permeability so
that derivatives of the permeability are small, gives

[+ o—,-l?,-)v2 ~ DaR |y, Bo, RV,

—JfKVl//f+ﬁ|:<l+O'f )V Da/KV]lﬂ

aHF (17)

0 o+ (1—¢)e
o o+ (1—9)e

Here we have introduced the dimensionless parameters

(K ro (1- ¢)kp0(PC)f Ko
op=L0 po TUPTT g on0
: It Pkpo(pe), Ko

(18)

(19)

Thus o is an inter-phase momentum transfer parameter,
while f§ is a modified thermal diffusivity ratio.
Also, the thermal energy equations (8) and (9) become

20, W, 00, O, 00, . _,

L L T kN, +H(O, - 0, 20
o oy ox  ox Oy 7V 05 + H(O, = 0y), (20)
20, oy, a0, By, a0,

= k,V?0, +yH(0, — 0 21
o oy o T gy eV Ot HO =0, (21)
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where
kso (pC), Pk o hd*

o = 0 . oy = - O H=— 22
ko (00, T (0= $kyo Pk (22)

Thus « is a thermal diffusivity ratio, y is a modified thermal
conductivity ratio, and H is an inter-phase heat transfer

parameter.
The conducting state solution is
Vp=,=0, 0,=0,=1-p (23)

We now perturb this solution and write
Uy =P Y= 0 =1-y+6,,
0,=1-y+0,. (24)
We also invoke the principle of exchange of stabilities. This
has the effect that the inertial coefficient o drops out of the

subsequent equations. Substitution in Egs. (16)—(21) and
linearization gives

[(1 + 0K,V — Dafl?fw] ¥, — Bos KV,

00, 00
S o=+ (1 —p)e=t
=Ra/K,|—2 o 25
aK == | (25)
— /K, V¥, +[>’{< : + /K, >v2 —Da,-l?,,v“} /4
o o (¢ (e
0, oY
= = VO, + 7S+ H(O, - 0)), (27)
00, - oY
aa—t" =k,V?0, +a—;+yH(@f —0,). (28)

As a final scaling for mathematical convenience, one can
transform the rectangular domain to a square by means
of the transformation

x=Ax, y=y, (29)

where 4 is the depth-to-width aspect ratio

A=dJL. (30)

The differential equations take the matrix form

LY =0, (31)
where
Y= (l‘yfv quv @/7 @p)Tv (32)

2

, o0 o , o0 o
L11:(1+O'fo)( 62 a—yz) Dafo( 62 a—y2> s

. o
Ly = —posKy <A2 ==+ >

X2 Oy?
(}’)ARafI?f- 6
Ly=———""T"—"=,
¢+ (1 —¢)edx
1o _ (L= ¢)edRa/K, D
YT T g+ (1—d)e o
o*
2
L21 = —G/K <A o 2+a—yz>7
1 . ,o0 o
et )0
2
_Dapr(A a 2+a—y2> 5
L — $pARasK, Q
BT+ (1— e o’
(1 — $p)edRa;K, d
Loy = — =
o+ (1—¢)e 0x
0
L3y = Ly an, Ly =Ly =0,
2

(33)

For conducting stress-free top and bottom boundaries and
insulating stress-free side walls, the boundary conditions
are

oy, oY, 00, 00,

q’ = = = —_— —_—
4 ? ox? ox? Ox Ox
at x =0 and at x = 1,

34
lp—av—azq’f ¥, —0,=0,=0 ()
= p ayz - ay ;= -

aty=0and at y = 1.

This set of boundary conditions is satisfied by functions of
the form

¥, = sinmaxsinnny, mn=1273 ..., (35)

0,, = cospnxsingny, p,q=1,2,3,... (36)

We can take this set of functions (that are exact eigenfunc-
tions for the homogeneous case) as trial functions for an
approximate solution of the heterogeneous case. For exam-
ple, working at second order, we can try
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V=41V +A41¥n + A4V + A4 VPn,
Y =Bu¥u+BnY¥n + B+ Bn¥n,
O = C1101 + C12013 + €103 + C2Ox,
O, = D10 +D1,015 + D> O3 + Dy 6»,.

(37)

Let Ry, R», R3, R4, be the residuals when the four expres-
sions (37) are substituted in the left-hand sides of the four
differential equations involved in Eq. (31). In turn, R, and
R, are made orthogonal to ¥y, V12, V21, P2, and R3 and
R4 are made orthogonal to @11, @15, Oy, O»>.

The result is 16 linear homogeneous equations in the 16
constants Ay, ..., D, whose solution requires the vanish-
ing of the determinant of coefficients, namely

det M =0, (38)

where M is a 16 by 16 matrix.

In the general case, the integrals in the matrix elements
can be obtained by quadrature. The eigenvalue equation,
Eq. (38) can then be solved to give the critical Rayleigh
number Ra.

We consider a quartered square in which each slowly
varying quantity is approximated by a piecewise-constant
distribution. The mean value of the quantity is approxi-
mated by its value at centre of the main square:

f =7(0.5,0.5). (39)

In each quarter, the function is approximated by its value
at the centre of that quarter, and a truncated Taylor series
expansion is used to approximate this quantity. For exam-
ple, in the region 1/2<x<1, 1/2<y<1,f(x,y) is
approximated by f{0.75,0.75) and then by

£(0.5,0.5) +0.25£,(0.5,0.5) + 0.25£,(0.5,0.5).

Hence we consider the case

K(x,y) =1—=0m — v ky(x,p) = 1 — e — gy,
for0<x<1/2, 0<y<1/2,

Ky(x,y) = 14 3m — v, kp(x,9) = 1+ em — &pv,
for1/2<x<1, 0<y<1/2,

K(x,y) =1 =0+ v kp(x,p) = 1 — e + &pv,
for0<x<1/2, 12<y<]1,

Ky(x,y) = 1+ dpm + Oy, kp(x,9) = 1+ m + &pv,
for1/2<x<1, 1/2<y<1,

I?p(x,y) =1—0m— 5pV7]}p(an’) =1-=¢&mn— gy,
for0<x<1/2, 0<y<1/2,

[?P(x’y) =1+ 517H - 5PV7]}P(xay) =1+ EpH — &pv,
for1/2<x<1, 0<y<1/2,

I?p(x,y) =1—-0u+ 5pv,l}p(x,y) =1—¢mu+ev,
for0<x<1/2, 1/2<y<]1,

kp(xvy) =1 + 5pH + 5pV7i(p(xay) =1 + EpH + Epv,
for1/2<x<1, 1/2<y<1,

where, for example,

=~

1 laz?f/ax
fH = Z

) 5fV -
Ky ‘|x1/2‘y1/2 4 x=1/2,y=1/2

(41)

We introduce the shorthand notation
[Ava Arv, Apa, ApVaEfH7EfVuEpH>EpV]

= (8/31)[0rm, 0¢v, Ops Opvs Em/2,67v, 61/ 2,89 (42)
An analytical expansion of a general determinant of order
16 involves 2 x 10" terms and so is obviously impractical.
However, the determinant of a quasi-diagonalized matrix
M (one in which all the elements off the principal diagonal
are small) can be approximated, to second order in small

quantities, as follows.
Define the trace of M as

Tr=M(1,1)M(2,2)---M(16, 16).

Initialize D = Tr.
Fori=1,...,15 j=i+1,...,16

M, )M, 1)
M(i, )M (], j)

The final value of D gives det M.

A proof of the validity of the algorithm is based on an
expansion according to the minors of the last two columns
(or rows) and induction.

This expression given by the algorithm is already
approximate to second order in small quantities occupying
the off-diagonal elements.

The details of the evaluation of the matrix elements are
omitted here for simplicity. The evaluation follows the pat-
tern in [4].

Using elementary row and column transformations, the
present determinant can be put in diagonal form as follows.

Define

D=D- Tr. (43)

+ (1= ¢)e
)9 <¢ g
41— e
V=TT

Zom = (m*A* + n*) 1,

__DaZum+oy
- Dame,, + 1 + O'f ’

mn

_Da;Z,, + K" + 0y

Cmn - b)
ar
p __ DyZuw+as
e Da/‘Zmn + K;l + ar ’
Emn - O-f

Da/»Zm,, —|— 1 + O'/"



D.A. Nield, A.V. Kuznetsov/ International Journal of Heat and Mass Transfer 50 (2007) 3329-3339

Z H
F,, = L7
mnA
L
Gmn =5
Zwn +H
_ mnA
" Dafzim + (1 + O-_/>>Zm" ’
mnA
Ly = o 5
ﬁo-men
1
mn — A’
A 9
Ly = m /Ha
mnA
Zmn
My, = 7 . .1
Zyn +7H
Pmn = [(Zmn +H)lpf +H¢p]a

mnA

1
=—|\(Z H Hyr
an mTEA[( mn‘f'V )lﬁp‘FV w/]7

DaZ2,+ (1+K," +20/)DayZy, + K, + (K, + )y
0 (DatyZym +1+20,) ’

mn

mnd [Da;Z,, + K, '+ 20,
Damen + 1 + 20'f

(Zmn +H)lpf +Hl//p
ﬁ[(zmn =+ “/H)Wp + “/Hl,bf] ’

Ton = )
mrA((Zyn + 7H)W, + yH /]

_ Da;Z,, 1-K,'
o Uf DCZme,,—‘rl—’-sz’

(DayZum + K, ' +207)(DayZu + o7)

S =
mn O'/Zmn

mn

Wmn =1- )
_ Z)nn
mn — mT[A )
1..Y Sy Y
AA,nn — mn mn mn mn mn H ,
an + T anmn V lpflpp
Kmn Ymn
Ban =T A
O
Ra  |Hpm
Ccmn =1 - R En )
[+E,, [T o ]
DDy = 20wy 4 g, | R
mn — 1 + Emn Tmn a mn a?
EE,, = ™ Ra — Rmny
T’nn a
FF H Ra + E
mn — a mn
T
Smn
GGmn = T Ra + Wmm

Sn
HH,, = — Ra + Vs
Ty = —m g
mn — 1 —’—Emn a7
Kmn
KK,y = Ymnlpf —yHl//f -1 )
an
Smn Kmn Im”
Hom = (r {1 e VH} e )Y”’”‘”f’
FF,,By
Omnpg = ’
1+ Ep
ﬂ _ Fanqu
mnpq 1 + Emn I
H,,By
ymnpq = 1 +E,, )
5 H,Epy,
mnpq 1+ Emn’
Kmn Ymanq
Nonpg = lebfl// ’
L O O i
FF [ S |
Conpy = 72— | Wy + 22 Ral
pq 1 + o | Pq qu |
FF S
Omn = |: - 1:| |:V —qua}
P 1+ E,m, T,
H [ S 1
Doy =~y 4 2P R
pq 1+Emn I Prq qu |
H [ S
_ mn e ﬂR
:umnpq 1 +Emn I Pq + qu a:|7
D 7 P . % 9. 9% P
mnpq — )
anqu ’ anquTPq o
T = R_a SPqYP‘I _ IPqYP‘I lp _ SPqKPqYPq ))Hlﬁz
mnpq )
Ton qu qu 4 ququ 4
RaPuy (1yYe  SpKpaYp
= ) wH
pmnpq Tmn mn ( qu l/// * TPQqu ! wf lpp ’
RaY
Onnpg = T7Pq l//f7
RaP,,Y
Tmnpg = ﬁ »
Ra Kp ¥,
Umnpg = _lpf <qu - yHlpf )
T qu
RaP,, K Y oy
(Pmnpq = WVH‘/UWP’
mnmnpq
Y Py
Dpnpg = .
QP‘]
Then the diagonalized matrix takes the form
Mll M12 M13 M14
M = M21 M22 M23 M24
M31 M32 M33 M34 ’
My My, My My
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where
1+ Ey —BuAy —EnAy —BulAm — ExAun 0
M —BiAry — EnAyy 14+ Ep 0 —BnAm — EnAyn
11 = )
—BiAm — EnApu 0 1+ Ey —BnAry — ExnApyy
0 —BipAm — EnApg —BalApy — EnApy 14+ Ex»
0 GG12AfV +HH12APV GGy Ayy +HH21APH 0
M., — GGHAfV +HH11APV 0 0 GGQzAfH +HH22APH
27| GGl Agm + HH Ay 0 0 GGnApy + HHy Ay
0 GGlefH +HH12ApH GGZlAfV +HH21ApV 0
0 Ra(Apv — Afv) Ra(ApH — AfH) 0 00 0 O
Ra(Apv — Af\/) 0 O Ra(ApH - A/H) 0 0 0 O
Mj; = , My = )
Ra(ApH - AfH) 0 0 Ra(ApV - Afv) 00 0 O
0 Ra(ApH — AfH) R(l(ApV - Afv) 0 00 0 O
0 —onndy +(En—Bun)dpy —widm + (Ea = Brio) Apn 0
M. — | ~tudry+ (B = Bion) Ay 0 0 —omdsn+ (Ex = Bion) dpn
T oo+ (B — Born ) A 0 0 —mindv+ (Ex — faxn) v
0 —mndpm+ (B2 = o) dpn —00214pv + (B2t = ypon) Apy 0
My, = [Maa1, My, Moz, Mgy, Mys = [Mys1, M3z, Mass, Moz,
_ 0 _
where
M —CC 45y + DDAy + vioniEry + Qo Epy
- - 31 = )
—EE]] —CC21A1'H + DDZlApH + !)2]1]EfH + (PZIIIEPH
Condyy + 0pndyy — monEry — ponEpy 0
My = 0 ) B -
Omdm + 0undpn — munEm — ponEpn [ —CCy1Apy + DDAy + viiEry + @pypEpy
- 0 : 0
511124‘_/’\/ + 911124‘pv — kv — punkyv Mo3; = 0 )
—EE);
My, = 0 ) L —CCy»Asy + DDy Ay + 02012E 1 + @ap1pEpm |
r—CCydmy +DDyAd + vinErg + E
| $oonndym + O0nndpn — monEm — ponEm | e 155t 7 DS/ T Pruiz i
n - 0
Cundn 4 O dpn — T Ern — Py Epn M3 = ,
0 0
Mo = ’ —CCopdyy + DDA E, E
—EE,, L 24y + DDnApy + 0oLy + @ami Epy
| Comdyv + Oy Apy — T Erv — popyi Epv | [ 0
L 0 -
Cos o+ Orann E P M —CCadu + DD Apy + vionEpn + @00 Epn
12224 H 12224pH — T222LfH — Pr222LpH 234 =
My = ) —CCydyy + DDy Ay + vaimEry + @ynkpy
Oy + O dpyy — manEry — pymEyy / b ! 2
L —EEy» i - 0
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0 —onnEry + ik —onuanEm + tinkm 0
—onEpy + tonkyy 0 0 —010Em + tnkmn
—onEm + i Epn 0 0 —0unEry + 1ankyy

0 —0nnEm + tnkn  —0miEv + TamiEpy 0

0 Tindy +onndy  Yundm + oundm 0
Yiondrv + oy 0 0 V1222451 + 0122241
Vo dru + o don 0 0 Vaundrv + 030l
0 Voanndrn + 0nndpn YAy + 0y 0
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Mz, = My, M, Moz, My, [
where
M3, =
_ 0 _
—Aondpv + i dpy + LLGEpy + vionEpy L
My, = )
— oA + o dpa + LLEg + varnEpn
. 0 -
[ —Zndy + il + LLE v + vinnEpy | M3, =
0
Mz, =
0
| —An12dsu + Uppdpn + LLpEa + vaonEpy |
[ =221 dm + iy A + LLy Epyt + Vi1 Epn |
0
M;y; = M3 =
0
| — A1 4y + pong Apy + LLo Epy + Va1 Epy |
I 0 i _
—JApn + o dpn + LLnE 4 vionEpn
M;yy =
— Ay + Ay + LLnEpy + Vo Epy M3y =
. 0 -
M3 = [Mi31, M3, Mass, My, )
where
0 Yy Ery — onn,Ey Yoy Em — o ,En
M — Yy, Erv — onn,Epy 0 0
# Yy, Em — onny,Epm 0 0

0 Yy Em — ooy ,Exn Yoau Ery — onny,Epn

JJ12A‘/V — JJ12ApV + KKllEfv — ’71112EPV
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[ Judyry —JTndpy +KKpEry — i Epy ]|

| I ndry — JTpdpn + KK E g — 01y Epn |

[JTnAm — JT 1 Apn + KK Epn — o1 Epnt |

| JIndyy —IIndpy + KKy Ery — NynEpy |
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0

0
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0
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00 0 O
00 0 O
M =
4l 000 O0f
00 0 O
0 Advuy,Epy Ador Epu 0
M AAlll//pEpV 0 0 AAQZWpEpH
42 = ’
2T 440y, En 0 0 AAnY
0 AdoY,Em Ado,Epy 0
0 7}7H|///lﬁpBBle/,v 7}7H¢/WFBBZIE),H 0
—VHY b, BB Epy 0 0 —VHY BBy Eyy
e 0 0 o HY b BBy |
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(46)

cal heterogeneity and horizontal heterogeneity act indepen-
dently at this order of approximation. (Product terms like
orudyy are absent in the last expression.) Since the expres-
sion in square brackets in Eq. (49) is positive definite, the
heterogeneities lead to a reduction in the critical value of
Ra for all combinations of horizontal and vertical hetero-
geneities and all combinations of permeability and conduc-
tivity heterogeneities. The effects of the horizontal
permeability heterogeneity and the horizontal conductivity
heterogeneity are at the first combination step subtractive.
In the general case one has

Ra = Rap(1 + CllHé;’H + CZZHéiH + Caanely
+ Caunéyy + Condmdpn + Caanernépn
+ Cizndrnérn + Coundpnéon + Crandruépm
+ Cosudpnerm + CllVé?’V + C22V5;27V + Cavigy
+ C44v6§v + Crapdvo,y + Caavervepy
+ Cravdrvery + Caavopvépy + Cravdrveyy

The solution for the homogeneous case is given by

EE11 = 0, or

_RuTy
Si

For the weakly heterogeneous case we perturb this. We
substitute

:R11T11

11

Ra

(47)

Ra

(1+29), (48)

linearize for small S, and solve for S.
3. Results and discussion

The case of a regular porous medium corresponds to the
limit as o, ¢ and K, tend to zero. The case of local thermal
equilibrium corresponds to H tending to zero (or H tending
to infinity with the Rayleigh number redefined, now
expressed in terms of an effective thermal conductivity).
Taking both limits produces the expression

1
S=-= [7(441 it — SEm)’ + 324,y — 5Efv)2] (49)
This leads to the critical value
64
Ra= 4n2{1 ~ 367 [7(45.&1 —2.56mm)" +3(20,v — 58.fV)2} }

~39.48{1 — 1.281(8; — 0.625¢;)” — 0.137(5, — 2.5,)*}.
(50)

This is the result obtained by Nield and Kuznetsov [4]. It
shows that the effects of weak horizontal heterogeneity
and vertical heterogeneity are each of second order in the
property deviations and their combined contribution is of
the order of the variances of the distributions for perme-
ability and conductivity (which are here equal to
5_?»,4 + 5?\, and e_f»H + e}v, respectively). The effects of verti-

+ C23V5pV8fV)' (51)
Table 1
Parameter values for the cases applicable to Table 2

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

¢ 0.9999 0.4 0.4 0.4 0.4 0.6
2 0.00001 0.4 0.4 0.4 0.4 0.6
A 1 1 1 1 1 1
Day 0 1 1 1 1 1
K, 0.00001 0.0001 1 0.0001 0.0001 1
of 0.00001 1 1 1 1 1
B 1 10 10 10 10 10
b 1 1 1 1 10 1
H 0.00001 1 1 10 1 1
Table 2

Values of the Rayleigh number coefficients, defined by Eq. (51), for the

various cases with parameter values given in Table 1

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Ray 39.48 1398.56 125546 152643  1180.83  1129.13

Chg  —1.281 0.032 0.031 0.032 0.032 0.031
Cron 0 0.000 0.003 0.000 0.000 0.003
Cyyp - —0.500 —0.194 —0.180 —0.139 —0.203 —0.184
Cun 0 —0.018 —0.024 —0.076 —0.047 —0.020
Ciou 0 0.000 0.000 0.000 0.000 0.000
Caan 0 0.004 0.002 0.002 0.024 0.004
Cisn 1.601 0.121 0.110 0.128 0.147 0.088
Coan 0 0.000 0.001 0.000 0.000 0.001
Cian 0 0.000 0.006 0.002 0.002 0.064
Cyn 0 —0.023 0.010 —0.044 —0.050 0.006
Cnv  —0.137 0.032 0.031 0.032 0.032 0.031
Crvy 0 0.000 0.003 0.000 0.000 0.003
Cy;v - —0.858 —0.700 —0.660 —0.508 —0.752 —0.674
Caav 0 —0.054 —0.093 —0.300 —0.185 —0.078
Ciav 0 0.000 0.000 0.000 0.000 0.000
Cagy 0 0.022 0.019 0.038 0.120 0.023
Cizy 0.686 0.120 0.108 0.126 0.145 0.085
Coav 0 0.000 0.001 0.000 0.000 0.001
Ciay 0 0.000 0.006 0.002 0.001 0.006
Cray 0 —0.046 0.009 —0.044 —0.051 0.006
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By plugging numerical parameter values into an algebraic
expression obtained using Mathematica, we computed the
Rayleigh number coefficients for a few representative cases,
for the parameter values listed in Table 1. The computed
values are given in Table 2. Case 1 approximates the case
of a regular porous medium. For this case the computed re-
sults agree with the analytic formula given by Eq. (50). The
other cases involve representative parameter values.

The results show that certain coefficients are generally
small, and for practical purposes may be set equal to zero.
These are C22H, C12H, C24H, szv, Clzv, C24V and C14. Also
Cr3p, and Casy, are relatively small. The conclusion is that
the effect of the hydrodynamic heterogeneity of the p-phase
is generally small. This result could be expected. On the
other hand, the thermal heterogeneity of the p-phase can
be quite significant when the thermal diffusivity of the p-
phase is relatively large.

4. Conclusions

We have examined the effects of both horizontal and
vertical hydrodynamic (permeability) heterogeneity and
thermal (conductivity) heterogeneity on the onset of con-
vection in a horizontal layer of a saturated bidisperse por-
ous medium uniformly heated from below using linear
stability theory. For the case of weak heterogeneity we
have carried out an analysis in terms of perturbation quan-
tities representing the heterogeneity. We found that the
effect of such heterogeneity on the critical value of the Ray-
leigh number Ra based on mean properties is of second
order if the properties vary in a piecewise constant or linear

fashion. The effects of horizontal heterogeneity and vertical
heterogeneity are then comparable once the aspect ratio is
taken into account, and to a first approximation are inde-
pendent. A feature of the bidisperse porous medium is that
the thermal heterogeneity of the p-phase can be quite sig-
nificant when the thermal diffusivity of that phase is large
relative to that of the f-phase.
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