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Abstract

The effects of both horizontal and vertical hydrodynamic and thermal heterogeneity, on the onset of convection in a horizontal layer
of a saturated bidisperse porous medium uniformly heated from below, are studied analytically using linear stability theory for the case
of weak heterogeneity. It is found that the effect of such heterogeneity on the critical value of the Rayleigh number Ra based on mean
properties is of second order if the properties vary in a piecewise constant or linear fashion. The effects of horizontal heterogeneity and
vertical heterogeneity are then comparable once the aspect ratio is taken into account, and to a first approximation are independent. The
thermal heterogeneity of the p-phase can be quite significant when the thermal diffusivity of that phase is large relative to that of the
f-phase.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of the onset of convection in a horizontal
layer of fluid heated uniformly from below is commonly
called the Rayleigh-Bénard problem in the case of a fluid
clear of solid material and the Horton–Rogers–Lapwood
(HRL) problem for the case of a fluid-saturated porous
medium. A feature of such convection is that it generally
appears in the form of cells whose horizontal dimension
is of the same order as their vertical dimension. The critical
dimensionless wavenumber ac in the linear stability analysis
turns out to have a value of about 3 in most cases. In the
HRL problem with conducting impervious boundaries
ac ¼ p, a value that corresponds to rolls of square cross-
section. An exception occurs in the case of ‘‘insulating”

(with respect to perturbation heat flux) boundaries. For
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this case ac ¼ 0, so that the convection occurs as a single
cell.

In recent discussions about the effect of heterogeneity
(of either permeability or thermal conductivity or both)
on convection in a porous medium it has been noted that
in the case of strong heterogeneity there can be dramatic
effects [1–3]. Even in the case of weak heterogeneity it is
of interest to investigate the combined effects of vertical
heterogeneity (property variation in the vertical direction,
including horizontal layering as a special case) and hori-
zontal heterogeneity. This is the subject of the analysis of
Nield and Kuznetsov [4]. The survey of the effects of heter-
ogeneity in Nield and Bejan [5] indicates this topic had not
been considered previously. In their analytical study Nield
and Kuznetsov [4] found that the effect of such heterogene-
ity on the critical value of the Rayleigh number Ra based
on mean properties is of second order if the properties vary
in a piecewise constant or linear fashion. The effects of hor-
izontal heterogeneity and vertical heterogeneity are then
comparable and to a first approximation are independent.
For the case of conducting impermeable top and bottom
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Nomenclature

A aspect ratio (height to width)
c specific heat at constant pressure
d height of the enclosure
Daf Darcy number,

~lKf 0

ld2

g gravity
h inter-phase heat transfer coefficient (incorporat-

ing the specific area)
H inter-phase heat transfer parameter, hd2

/kf 0

k* overall (effective) thermal conductivity
k�f thermal conductivity of the f-phase
k�p thermal conductivity of the p-phase
kf 0 mean value of k�f ðx�; y�Þ
kp0 mean value of k�pðx�; y�Þ
k̂f k�f =kf 0

k̂p k�p=kp0

Kr permeability ratio,
Kp0

Kf 0

K* permeability
Kf 0 mean value of K�f ðx�; y�Þ
Kp0 mean value of K�pðx�; y�ÞbK f K�f =Kf 0bK p K�p=Kp0

L enclosure width
p dimensionless pressure,

ðqcÞf Kf 0

kf l p
p* pressure
Raf Rayleigh number,

qF gb̂ðT l�T uÞKf 0d
l/kf 0=ðqcÞf

S parameter defined by Eq. (48)
t* time
t dimensionless time,

kf 0

ðqcÞf d2 t�

T �f temperature in the f-phase
T �p temperature in the p-phase
Tl temperature at the lower boundary
Tu temperature at the upper boundary
T �F volume average of the temperature over the

fluid, defined by Eq. (3)
T0 reference temperature, T l � T u

uf dimensionless horizontal velocity in the f-phase,
ðqcÞf d
/kf 0

u�f
up dimensionless horizontal velocity in the p-phase,

ðqcÞf d
ð1�/Þkp0

u�p
u* dimensional horizontal velocity

v* vector of Darcy velocity, ðu�; v�Þ
vf dimensionless vertical velocity in the f-phase,

ðqcÞf d
/kf 0

v�f
vp dimensionless vertical velocity in the p-phase,

ðqcÞf d
ð1�/Þkp0

v�p
v* dimensional vertical velocity
x dimensionless horizontal coordinate, x*/d
x* horizontal coordinate
y dimensionless upward vertical coordinate, y*/d
y* upward vertical coordinate

Greek symbols

a thermal diffusivity ratio,
kf 0

kp0

ðqcÞp
ðqcÞf

b modified thermal diffusivity ratio,
ð1�/Þkp0ðqcÞf

/kf 0ðqcÞp
b̂ volumetric thermal expansion coefficient of the

fluid
c modified thermal conductivity ratio,

/kf 0

ð1�/Þkp0

e porosity in the p-phase
hf dimensionless temperature in the f-phase,

T �f�T u

T l�T u

hp dimensionless temperature in the p-phase,
T �p�T u

T l�T u

Hf perturbation quality defined by Eq. (24)
Hp perturbation quality defined by Eq. (24)
hF parameter defined by Eq. (18)
~l effective viscosity of the porous medium
qF density of the fluid
rf inter-phase momentum transfer parameter,

fKf 0

l
/ volume fraction of the f-phase
wf streamfunction in the f-phase, defined by Eq.

(14)
wp streamfunction in the p-phase, defined by Eq.

(14)
Wf perturbation quality defined by Eq. (24)
Wp perturbation quality defined by Eq. (24)

Subscripts

f f-phase
p p-phase

Superscript
* dimensional variable

3330 D.A. Nield, A.V. Kuznetsov / International Journal of Heat and Mass Transfer 50 (2007) 3329–3339
boundaries and a square box, the effects of permeability
heterogeneity and conductivity permeability each cause a
reduction in the critical value of Ra, while for the case of
a tall box there can be either a reduction or an increase.
It was found by Nield and Kuznetsov [6] that in the case
of a shallow box with constant-flux top and bottom bound-
aries there can be either a reduction of increase in the crit-
ical value of the Rayleigh number.

In the present paper the analysis of Nield and Kuznet-
sov [4] is extended in various ways. First, the momentum
equation is extended from the Darcy to the Brinkman
model. Second, the effect of local thermal non-equilibrium
is included. Third, at the same time an extension is made
from a regular porous medium to a bidisperse porous med-
ium, or BDPM (a porous medium in which the ‘‘solid”

phase is itself a porous medium), illustrated in Fig. 1a,
using a two-velocity as well as a two-temperature model.

At each stage of the extension the complexity of the
analysis is increased. In order to obtain significant results
it is necessary to use a second order Galerkin expansion,



Fig. 1. (a) Conceptual diagram of a bidisperse porous medium and (b) schematic diagram of the problem (the walls are also assumed to be stress-free).
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rather than just a first order one. In the case of trial func-
tions involving two coordinates that means four trial func-
tions for each primary dependent variable, and there are
four such variables for the two-velocity and two-tempera-
ture model. Hence the analysis involves the algebraic
expansion of a determinant of order 16. An algorithm
has been developed to handle determinants of such large
size.

The present paper may also be regarded as an extension
of the analysis of Nield and Kuznetsov [7] from the homo-
geneous case to the heterogeneous case. Further informa-
tion about heat transfer in bidisperse porous media can
be found in the review by Nield and Kuznetsov [8]. Other
references to papers on convection in heterogeneous por-
ous media can be found in [4].

At the outset we have made some simplifications. For
strong heterogeneity it is convenient to work in terms of
heterogeneity of log permeability (or log hydraulic conduc-
tivity), but in a study of weak heterogeneity this would just
complicate the analysis. For a similar reason, we have not
considered random fields. Our assumption of weak hetero-
geneity allows us to work in terms of approximations
involving small quantities, and we work to second order
in these.
2. Analysis

We consider a two-dimensional rectangular enclosure
(depth d, width L) occupied by a BDPM heated uniformly
from below, with applied temperatures Tl and Tu at the
lower boundary (y� ¼ 0) and the upper boundary
ðy� ¼ dÞ, respectively. This is shown schematically in
Fig. 1b. Thus d is the depth of the layer. (The asterisks
denote dimensional variables.) The equations of continuity
(expressing conservation of mass) for the velocity compo-
nents in the two phases are

ou�f
ox�
þ

ov�f
oy�
¼ 0; ð1Þ

ou�p
ox�
þ

ov�p
oy�
¼ 0: ð2Þ

We note that in the traditional Darcy formulation the pres-
sure is an intrinsic quantity, i.e. it is the pressure in the
fluid. We recognize that in a BDPM the fluid occupies all
of the f-phase (the macropore portion) and a fraction of
the p-phase (the micropore portion of the porous phase).
We denote the volume fraction of the f-phase by / (some-
thing that in a regular porous medium would be called the
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porosity) and the porosity in the p-phase by e. Thus 1� /
is the volume fraction of the p-phase, and the volume frac-
tion of the BDPM occupied by the fluid is /þ ð1� /Þe.
The volume average of the temperature over the fluid is

T �F ¼
/T �f þ ð1� /ÞeT �p

/þ ð1� /Þe : ð3Þ

The drag force (per unit volume) balances the gradient of
the excess pressure over hydrostatic. Our basic hypothesis
is that in a BDPM the drag is increased by an amount
fðv�f � v�pÞ for the f-phase and decreased by the same
amount for the p-phase.

Within the enclosure the permeability is K�ðx�; y�Þ and
the overall (effective) thermal conductivity is k�ðx�; y�Þ.
Accordingly, we write the momentum equations as

op�

ox�
¼ � l

K�f
u�f � fðu�f � u�pÞ þ ~lr2u�f ; ð4Þ

op�

ox�
¼ � l

K�p
u�p � fðu�p � u�f Þ þ ~lr2u�p; ð5Þ

op�

oy�
¼ � l

K�f
v�f � fðv�f � v�pÞ þ ~lr2v�f þ qF gb̂ðT �F � T 0Þ; ð6Þ

op�

oy�
¼ � l

K�p
v�p � fðv�p � v�f Þ þ ~lr2v�p þ qF gb̂ðT �F � T 0Þ: ð7Þ

We have simplified the equations by assuming that ~lf and
~lp are equal, so the subscripts on ~l can be dropped. Here
qF is the density of the fluid, b̂ is the volumetric thermal
expansion coefficient of the fluid, and T0 is a reference
temperature.

The thermal energy equations are taken as

/ðqcÞf
oT �f
ot�
þ /ðqcÞf v�f � rT �f ¼ /k�fr2T �f þ hðT �p � T �f Þ;

ð8Þ

ð1� /ÞðqcÞp
oT �p
ot�
þ ð1� /ÞðqcÞpv�p � rT �p

¼ ð1� /Þk�pr2T �p þ hðT �f � T �pÞ: ð9Þ

Here c denotes the specific heat at constant pressure, k* de-
notes the thermal conductivity, and h is an inter-phase heat
transfer coefficient (incorporating the specific area).

In order to simplify the following analysis, on the right-
hand side of Eq. (8) the terms involving the partial deriva-
tives of k�f with respect to the spatial coordinates have been
dropped. In accordance with the assumption of weak het-
erogeneity, it is assumed that the variation of k�f over the
enclosure is small compared with the mean value of k�f . It
can be shown that this approximation has no effect on
the results presented in this paper provided that k�f is a lin-
ear function of the spatial variables considered separately.
A similar approximation involving k�p has been made in Eq.
(9). A similar assumption about the variation of the perme-
ability is made below.

We define Kf0, Kp0, kf0 and kp0 as the mean values of
K�f ; K�p; k�f and k�p, respectively, and write
bK f ¼ K�f=Kf 0; bK p ¼ K�p=Kp0; k̂f ¼ k�f =kf 0; k̂p ¼ k�p=kp0:

ð10Þ

We introduce dimensionless variables as follows:

ðx�; y�Þ ¼ dðx; yÞ; t� ¼
ðqcÞf
kf 0

d2t; p� ¼ kf l
ðqcÞf Kf 0

p; ð11Þ

ðu�f ; v�f Þ ¼
/kf 0

ðqcÞf d
ðuf ; vf Þ; ðu�p; v�pÞ ¼

ð1� /Þkp0

ðqcÞpd
ðup; vpÞ;

ð12Þ
T �f ¼ ðT l � T uÞhf þ T u; T �p ¼ ðT l � T uÞhp þ T u: ð13Þ

We take the reference temperature T0 as T l � T u. We also
introduce the stream functions wf and wp defined so that

uf ¼ �
owf

oy
; vf ¼

owf

ox
; up ¼ �

owp

oy
; vp ¼

owp

ox
: ð14Þ

We define a Rayleigh number Raf and a Darcy number Daf

based on properties in the f-phase by

Raf ¼
qF gb̂ðT l � T uÞKf 0d

l/kf 0=ðqcÞf
; ð15aÞ

Daf ¼
~lKf 0

ld2
: ð15bÞ

Elimination of the pressure from Eqs. (4)–(7), on the
assumption that the maximum variation of permeability
in the box is a small fraction of the mean permeability so
that derivatives of the permeability are small, gives

ð1þ rf
bK f Þr2 � Daf

bK fr4
h i

wf � brf
bK fr2wp

¼ Raf
bK f

ohF

ox
; ð16Þ

� rf
bK pr2wf þ b

1

Kr
þ rf

bK p

� �
r2 � Daf

bK pr4

� �
wp

¼ Raf
bK p

ohF

ox
; ð17Þ

where

ohF

ox
¼

u ohf

ox þ ð1� /Þe ohp

ox

/þ ð1� /Þe : ð18Þ

Here we have introduced the dimensionless parameters

rf ¼
fKf 0

l
; b ¼

ð1� /Þkp0ðqcÞf
/kf 0ðqcÞp

; Kr ¼
Kp0

Kf 0

: ð19Þ

Thus rf is an inter-phase momentum transfer parameter,
while b is a modified thermal diffusivity ratio.

Also, the thermal energy equations (8) and (9) become

ohf

ot
�

owf

oy
ohf

ox
þ

owf

ox
ohf

oy
¼ k̂fr2hf þ Hðhp � hf Þ; ð20Þ

a
ohp

ot
�

owp

oy
ohp

ox
þ

owp

ox
ohp

oy
¼ k̂pr2hp þ cHðhf � hpÞ; ð21Þ
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where

a ¼ kf 0

kp0

ðqcÞp
ðqcÞf

; c ¼ /kf 0

ð1� /Þkp0

; H ¼ hd2

/kf 0

: ð22Þ
Thus a is a thermal diffusivity ratio, c is a modified thermal
conductivity ratio, and H is an inter-phase heat transfer
parameter.

The conducting state solution is

wf ¼ wp ¼ 0; hf ¼ hp ¼ 1� y: ð23Þ

We now perturb this solution and write

wf ¼ Wf ; wp ¼ Wp; hf ¼ 1� y þHf ;

hp ¼ 1� y þHp: ð24Þ

We also invoke the principle of exchange of stabilities. This
has the effect that the inertial coefficient a drops out of the
subsequent equations. Substitution in Eqs. (16)–(21) and
linearization gives

ð1þ rf
bK f Þr2 � Daf

bK fr4
h i

Wf � brf
bK fr2Wp

¼ Raf
bK f

/ oHf

ox þ ð1� /Þe oHp

ox

/þ ð1� /Þe

" #
; ð25Þ

� rf
bK pr2Wf þ b

1

Kr
þ rf

bK p

� �
r2 � Daf

bK pr4

� �
Wp

¼ Raf
bK p

/ oHf

ox þ ð1� /Þe oHp

ox

/þ ð1� /Þe

" #
: ð26Þ

oHf

ot
¼ k̂fr2Hf þ

oWf

ox
þ HðHp �Hf Þ; ð27Þ

a
oHp

ot
¼ k̂pr2Hp þ

oWp

ox
þ cHðHf �HpÞ: ð28Þ
As a final scaling for mathematical convenience, one can
transform the rectangular domain to a square by means
of the transformation

x ¼ Ax̂; y ¼ ŷ; ð29Þ
where A is the depth-to-width aspect ratio

A ¼ d=L: ð30Þ
The differential equations take the matrix form

LY ¼ 0; ð31Þ

where

Y ¼ ðWf ;Wp;Hf ;HpÞT; ð32Þ
L11 ¼ ð1þ rf
bK f Þ A2 o2

ox2
þ o2

oy2

� �
� Daf

bK f A2 o2

ox2
þ o2

oy2

� �2

;

L12 ¼ �brf
bK f A2 o

2

ox2
þ o

2

oy2

� �
;

L13 ¼ �
/ARaf

bK f

/þ ð1� /Þe
o

ox
;

L14 ¼ �
ð1� /ÞeARaf

bK f

/þ ð1� /Þe
o

ox
;

L21 ¼ �rf
bK p A2 o

2

ox2
þ o

2

oy2

� �
;

L22 ¼ b

"
1

Kr
þ rf

bK p

� �
A2 o2

ox2
þ o2

oy2

� �

�Daf
bK p A2 o2

ox2
þ o2

oy2

� �2
#
;

L23 ¼ �
/ARaf

bK p

/þ ð1� /Þe
o

ox
;

L24 ¼ �
ð1� /ÞeARaf

bK p

/þ ð1� /Þe
o

ox
;

L31 ¼ L42 ¼ A
o

ox
; L32 ¼ L41 ¼ 0;

L33 ¼ k̂f A2 o2

ox2
þ o2

oy2

� �
� H ; L34 ¼ H ;

L43 ¼ cH ; L44 ¼ k̂p A2 o2

ox2
þ o2

oy2

� �
� cH :

ð33Þ
For conducting stress-free top and bottom boundaries and
insulating stress-free side walls, the boundary conditions
are

Wf ¼ Wp ¼
o

2Wf

ox2
¼ o

2Wp

ox2
¼ oHf

ox
¼ oHp

ox
¼ 0

at x ¼ 0 and at x ¼ 1;

Wf ¼ Wp ¼
o

2Wf

oy2
¼ o

2Wp

oy2
¼ Hf ¼ Hp ¼ 0

at y ¼ 0 and at y ¼ 1:

ð34Þ

This set of boundary conditions is satisfied by functions of
the form

Wmn ¼ sin mpx sin npy; m; n ¼ 1; 2; 3; . . . ; ð35Þ

Hpq ¼ cos ppx sin qpy; p; q ¼ 1; 2; 3; . . . ð36Þ

We can take this set of functions (that are exact eigenfunc-
tions for the homogeneous case) as trial functions for an
approximate solution of the heterogeneous case. For exam-
ple, working at second order, we can try
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Wf ¼ A11W11 þ A12W12 þ A21W21 þ A22W22;

WP ¼ B11W11 þ B12W12 þ B21W21 þ B22W22;

Hf ¼ C11H11 þ C12H12 þ C21H21 þ C22H22;

Hp ¼ D11H11 þ D12H12 þ D21H21 þ D22H22:

ð37Þ

Let R1, R2, R3, R4, be the residuals when the four expres-
sions (37) are substituted in the left-hand sides of the four
differential equations involved in Eq. (31). In turn, R1 and
R2 are made orthogonal to W11, W12, W21, W22 and R3 and
R4 are made orthogonal to H11, H12, H21, H22.

The result is 16 linear homogeneous equations in the 16
constants A11; . . . ;D22 whose solution requires the vanish-
ing of the determinant of coefficients, namely

det M ¼ 0; ð38Þ

where M is a 16 by 16 matrix.
In the general case, the integrals in the matrix elements

can be obtained by quadrature. The eigenvalue equation,
Eq. (38) can then be solved to give the critical Rayleigh
number Ra.

We consider a quartered square in which each slowly
varying quantity is approximated by a piecewise-constant
distribution. The mean value of the quantity is approxi-
mated by its value at centre of the main square:

�f ¼ f ð0:5; 0:5Þ: ð39Þ

In each quarter, the function is approximated by its value
at the centre of that quarter, and a truncated Taylor series
expansion is used to approximate this quantity. For exam-
ple, in the region 1=2 < x < 1; 1=2 < y < 1; f ðx; yÞ is
approximated by f(0.75,0.75) and then by

f ð0:5; 0:5Þ þ 0:25f xð0:5; 0:5Þ þ 0:25f yð0:5; 0:5Þ:

Hence we consider the casebK f ðx; yÞ ¼ 1� df H � df V; k̂f ðx; yÞ ¼ 1� ef H � ef V;

for 0 < x < 1=2; 0 < y < 1=2;bK f ðx; yÞ ¼ 1þ df H � df V; k̂f ðx; yÞ ¼ 1þ ef H � ef V;

for 1=2 < x < 1; 0 < y < 1=2;bK f ðx; yÞ ¼ 1� df H þ df V; k̂f ðx; yÞ ¼ 1� ef H þ ef V;

for 0 < x < 1=2; 1=2 < y < 1;bK f ðx; yÞ ¼ 1þ df H þ df V; k̂f ðx; yÞ ¼ 1þ ef H þ ef V;

for 1=2 < x < 1; 1=2 < y < 1;bK pðx; yÞ ¼ 1� dpH � dpV; k̂pðx; yÞ ¼ 1� epH � epV;

for 0 < x < 1=2; 0 < y < 1=2;bK pðx; yÞ ¼ 1þ dpH � dpV; k̂pðx; yÞ ¼ 1þ epH � epV;

for 1=2 < x < 1; 0 < y < 1=2;bK pðx; yÞ ¼ 1� dpH þ dpV; k̂pðx; yÞ ¼ 1� epH þ epV;

for 0 < x < 1=2; 1=2 < y < 1;bK pðx; yÞ ¼ 1þ dpH þ dpV; k̂pðx; yÞ ¼ 1þ epH þ epV;

for 1=2 < x < 1; 1=2 < y < 1;

ð40Þ
where, for example,

df H ¼
1

4

obK f =oxbK f

" #
x¼1=2;y¼1=2

; df V ¼
1

4

obK f =oybK f

" #
x¼1=2;y¼1=2

:

ð41Þ

We introduce the shorthand notation

Df H;Df V;DpH;DpV;Ef H;Ef V;EpH;EpV

� �
¼ ð8=3pÞ½df H; df V; dpH; dpV; ef H=2; ef V; epH=2; epV�: ð42Þ

An analytical expansion of a general determinant of order
16 involves 2 � 1013 terms and so is obviously impractical.
However, the determinant of a quasi-diagonalized matrix
M (one in which all the elements off the principal diagonal
are small) can be approximated, to second order in small
quantities, as follows.

Define the trace of M as

Tr ¼ Mð1; 1ÞMð2; 2Þ � � �Mð16; 16Þ:

Initialize D ¼ Tr.
For i ¼ 1; . . . ; 15; j ¼ iþ 1; . . . ; 16

D ¼ D�Mði; jÞMðj; iÞ
Mði; iÞMðj; jÞTr: ð43Þ

The final value of D gives detM.
A proof of the validity of the algorithm is based on an

expansion according to the minors of the last two columns
(or rows) and induction.

This expression given by the algorithm is already
approximate to second order in small quantities occupying
the off-diagonal elements.

The details of the evaluation of the matrix elements are
omitted here for simplicity. The evaluation follows the pat-
tern in [4].

Using elementary row and column transformations, the
present determinant can be put in diagonal form as follows.

Define

wf ¼
/þ ð1� /Þe

/
;

wp ¼
/þ ð1� /Þe
ð1� /Þe ;

Zmn ¼ ðm2A2 þ n2Þp2;

Bmn ¼
Daf Zmn þ rf

Daf Zmn þ 1þ rf
;

Cmn ¼
Daf Zmn þ K�1

r þ rf

rf
;

Dmn ¼
Daf Zmn þ rf

Daf Zmn þ K�1
r þ rf

;

Emn ¼
rf

Daf Zmn þ 1þ rf
;
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F mn ¼
Zmn þ H

mpA
;

Gmn ¼
Zmn

Zmn þ H
;

H mn ¼
mpA

Daf Z2
mn þ ð1þ rf ÞZmn

;

Imn ¼
mpA

brf Zmn
;

Kmn ¼
1

mpA
;

Lmn ¼
Zmn þ cH

mpA
;

Mmn ¼
Zmn

Zmn þ cH
;

P mn ¼
1

mpA
½ðZmn þ HÞwf þ Hwp�;

Qmn ¼
1

mpA
½ðZmn þ cHÞwp þ cHwf �;
Rmn¼
Da2

f Z2
mnþð1þK�1

r þ2rf ÞDaf ZmnþK�1
r þðK�1

r þ1Þrf

rf ðDaf Zmnþ1þ2rf Þ
;

Smn ¼
mpA
rf Zmn

Daf Zmn þ K�1
r þ 2rf

Daf Zmn þ 1þ 2rf

�

þ
ðZmn þ HÞwf þ Hwp

b½ðZmn þ cHÞwp þ cHwf �

#
;

T mn ¼
ZmnðZmn þ H þ cHÞwf wp

mpA½ðZmn þ cHÞwp þ cHwf �
;

V mn ¼
Daf Zmn

rf
þ 1� K�1

r

Daf Zmn þ 1þ 2rf
;

W mn ¼ 1� ðDaf Zmn þ K�1
r þ 2rf ÞðDaf Zmn þ rf Þ

rf ðDaf Zmn þ 1þ 2rf Þ
;

Y mn ¼
Zmn

mpA
;

AAmn ¼
ImnY mn

Qmn

þ SmnKmnY mn

T mnQmn

cHwf wp;

BBmn ¼
KmnY mn

Qmn

;

CCmn ¼
Ra

1þ Emn

H mn

T mn
Raþ Emn

� �
;

DDmn ¼
Ra

1þ Emn

H mn

T mn
Raþ Emn

� �
� Ra;

EEmn ¼
Smn

T mn
Ra� Rmn;

FF mn ¼
H mn

T mn
Raþ Emn;

GGmn ¼
Smn

T mn
Raþ W mn;
HH mn ¼ �
Smn

T mn
Raþ V mn;

JJ mn ¼
Hmn

1þ Emn
Ra;

KKmn ¼ Y mnwf

Kmn

Qmn

cHwf � 1

� �
;

LLmn ¼
Smn

T mn
1� Kmn

Qmn

cH
� �

� Imn

Qmn

� �
Y mnwf ;

amnpq ¼
FF mnBpq

1þ Emn
;

bmnpq ¼
FF mnEpq

1þ Emn
;

cmnpq ¼
H mnBpq

1þ Emn
;

dmnpq ¼
HmnEpq

1þ Emn
;

gmnpq ¼
KmnY mnP pq

QmnQpq

cHwf wp;

fmnpq ¼
FF mn

1þ Emn
W pq þ

Spq

T pq
Ra

� �
;

hmnpq ¼
FF mn

1þ Emn
� 1

� �
V pq �

Spq

T pq
Ra

� �
;

kmnpq ¼
Hmn

1þ Emn
W pq þ

Spq

T pq
Ra

� �
;

lmnpq ¼
H mn

1þ Emn
�V pq þ

Spq

T pq
Ra

� �
;

mmnpq ¼
P mnIpqY pq

QmnQpq

wp þ
cHP mnSpqKpqY pq

QmnQpqT pq
wf wp;

pmnpq ¼
Ra
T mn

SpqY pq

T pq
� IpqY pq

Qpq

wf �
SpqKpqY pq

T pqQpq

cHw2
f

 !
;

qmnpq ¼
RaP mn

T mnQmn

IpqY pq

Qpq

wf þ
SpqKpqY pq

T pqQpq

cHwf wp

 !
;

rmnpq ¼
RaY pq

T mn
wf ;

smnpq ¼
RaP mnY pq

T mnQmn

wp;

tmnpq ¼
Ra
T mn

wf Y pq �
KpqY pq

Qpq

cHwf

 !
;

umnpq ¼
RaP mnKpqY pq

T mnQmnQpq

cHwf wp;

xmnpq ¼
Y mnP pq

Qpq

: ð44Þ

Then the diagonalized matrix takes the form

M ¼

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

26664
37775; ð45Þ
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where
M12 ¼

0 GG12Df V þ HH 12DpV GG21DHV þ HH 21DpH 0

GG11Df V þ HH 11DpV 0 0 GG22Df H þ HH 22DpH

GG11Df H þ HH 11DpH 0 0 GG22Df V þ HH 22DpV

0 GG12Df H þ HH 12DpH GG21Df V þ HH 21DpV 0

26664
37775;

M13 ¼

0 RaðDpV � Df VÞ RaðDpH � Df HÞ 0

RaðDpV � Df VÞ 0 0 RaðDpH � Df HÞ
RaðDpH � Df HÞ 0 0 RaðDpV � Df VÞ

0 RaðDpH � Df HÞ RaðDpV � Df VÞ 0

26664
37775; M14 ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

26664
37775;

M21¼

0 �a1112Df VþðE12�b1112ÞDpV �a1121Df HþðE21�b1121ÞDpH 0

�a1211Df VþðE11�b1211ÞDpV 0 0 �a1222Df HþðE22�b1222ÞDpH

�a2111Df HþðE11�b2111ÞDpH 0 0 �a2122Df VþðE22�b2122ÞDpV

0 �a2212Df HþðE12�b2212ÞDpH �a2221Df VþðE21�b2221ÞDpV 0

26664
37775

M11 ¼

1þ E11 �B12Df V � E12DpV �B21Df H � E21DpH 0

�B11Df V � E11DpV 1þ E12 0 �B22Df H � E22DpH

�B11Df H � E11DpH 0 1þ E21 �B22Df V � E22DpV

0 �B12Df H � E12DpH �B21Df V � E21DpV 1þ E22

26664
37775;
M22 ¼ ½M221;M222;M223;M224�;
where

M221 ¼

�EE11

f1211Df V þ h1211DpV � p1211Ef V � q1211EpV

f2111Df H þ h2111DpH � p2111Ef H � q2111EpH

0

266664
377775;

M222 ¼

f1112Df V þ h1112DpV � p1112Ef V � q1112EpV

�EE12

0

f2212Df H þ h2212DpH � p2212Ef H � q2212EpH

266664
377775;

M223 ¼

f1121Df H þ h1121DpH � p1121Ef H � q1121EpH

0

�EE21

f2221Df V þ h2221DpV � p2221Ef V � q2221EpV

266664
377775;

M224 ¼

0

f1222Df H þ h1222DpH � p1222Ef H � q1222EpH

f2122Df V þ h2122DpV � p2122Ef V � q2122EpV

�EE22

26664
37775;
M23 ¼ ½M231;M232;M233;M234�;

M231 ¼

0

�CC12Df V þ DD12DpV þ t1211Ef V þ u1211EpV

�CC21Df H þ DD21DpH þ t2111Ef H þ u2111EpH

0

266664
377775;

M232 ¼

�CC11Df V þ DD11DpV þ t1112Ef V þ u1112EpV

0

0

�CC22Df H þ DD22DpH þ t2212Ef H þ u2212EpH

266664
377775;

M233 ¼

�CC11Df H þ DD11DpH þ t1121Ef H þ u11121EpH

0

0

�CC22Df V þ DD22DpV þ t2221Ef V þ u2221EpV

266664
377775;

M234 ¼

0

�CC12Df H þ DD12DpH þ t1222Ef H þ u1222EpH

�CC21Df V þ DD21DpV þ t2122Ef V þ u2122EpV

0

266664
377775;



M24 ¼

0 �r1112Ef V þ s1112EpV �r1121Ef H þ s1121EpH 0

�r1211Ef V þ s1211EpV 0 0 �r1222Ef H þ s1222EpH

�r2111Ef H þ s2111EpH 0 0 �r2122Ef V þ s2122EpV

0 �r2212Ef H þ s2212EpH �r2221Ef V þ s2221EpV 0

26664
37775;

M31 ¼

0 c1112Df V þ d1112DpV c1121Df H þ d1121DpH 0

c1211Df V þ d1211DpV 0 0 c1222Df H þ d1222DpH

c2111Df H þ d2111DpH 0 0 c2122Df V þ d2122DpV

0 c2212Df H þ d2212DpH c2221Df V þ d2221DpV 0

26664
37775;
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M32 ¼ ½M321;M322;M323;M324�;
where

M321 ¼

0

�k1211Df V þ l1211DpV þ LL11Ef V þ m1211EpV

�k2111Df H þ l2111DpH þ LL11Ef H þ m2111EpH

0

26666664

37777775;

M322 ¼

�k1112Df V þ l1112DpV þ LL12Ef V þ m1112EpV

0

0

�k2212Df H þ l2212DpH þ LL12Ef H þ m2212EpH

26666664

37777775;

M323 ¼

�k1121Df H þ l1121DpH þ LL21Ef H þ m1121EpH

0

0

�k2221Df V þ l2221DpV þ LL21Ef V þ m2221EpV

26666664

37777775;

M324 ¼

0

�k1222Df H þ l1222DpH þ LL22Ef H þ m1222EpH

�k2122Df V þ l2122DpV þ LL22Ef V þ m2122EpV

0

26666664

37777775;
M33 ¼ ½M331;M332;M333;M334�;
where
M34 ¼

0 Y 12wf Ef V � x1211wpEpV Y 2

Y 11wf Ef V � x1112wpEpV 0

Y 11wf Ef H � x1121wpEpH 0

0 Y 12wf Ef H � x1222wpEpH Y 2

26664
M331 ¼

T 11

JJ 12Df V � JJ 12DpV þ KK11Ef V � g1112EpV

JJ 21Df H � JJ 12DpH þ KK11Ef H � g1121EpH

0

2666666664

3777777775
;

M332 ¼

J 11Df V � JJ 11DpV þ KK12Ef V � g1211EpV

T 12

0

JJ 22Df H � JJ 22DpH þ KK12Ef H � g1222EpH

2666666664

3777777775
;

M333 ¼

JJ 11Df H � JJ 11DpH þ KK21Ef H � g2111EpH

0

T 21

JJ 22Df V � JJ 22DpV þ KK21Ef V � g2122EpV

2666666664

3777777775
;

M334 ¼

0

JJ 12Df H � JJ 12DpH þ KK22Ef H � g2212EpH

JJ 21Df V � JJ 21DpV þ KK22Ef V � g2221EpV

T 22

2666666664

3777777775
;

1wf Ef H � x2111wpEpH 0

0 Y 22wf Ef H � x2212wpEpH

0 Y 22wf Ef V � x2221wpEpV

1wf Ef V � x2122wpEpV 0

37775



Table 2
Values of the Rayleigh number coefficients, defined by Eq. (51), for the
various cases with parameter values given in Table 1

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Ra0 39.48 1398.56 1255.46 1526.43 1180.83 1129.13
C11H �1.281 0.032 0.031 0.032 0.032 0.031
C22H 0 0.000 0.003 0.000 0.000 0.003
C33H �0.500 �0.194 �0.180 �0.139 �0.203 �0.184
C44H 0 �0.018 �0.024 �0.076 �0.047 �0.020
C12H 0 0.000 0.000 0.000 0.000 0.000
C34H 0 0.004 0.002 0.002 0.024 0.004
C13H 1.601 0.121 0.110 0.128 0.147 0.088
C24H 0 0.000 0.001 0.000 0.000 0.001
C14H 0 0.000 0.006 0.002 0.002 0.064
C23H 0 �0.023 0.010 �0.044 �0.050 0.006
C11V �0.137 0.032 0.031 0.032 0.032 0.031
C22V 0 0.000 0.003 0.000 0.000 0.003
C33V �0.858 �0.700 �0.660 �0.508 �0.752 �0.674
C44V 0 �0.054 �0.093 �0.300 �0.185 �0.078
C12V 0 0.000 0.000 0.000 0.000 0.000
C34V 0 0.022 0.019 0.038 0.120 0.023
C13V 0.686 0.120 0.108 0.126 0.145 0.085
C24V 0 0.000 0.001 0.000 0.000 0.001
C14V 0 0.000 0.006 0.002 0.001 0.006
C23V 0 �0.046 0.009 �0.044 �0.051 0.006

Table 1
Parameter values for the cases applicable to Table 2

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

/ 0.9999 0.4 0.4 0.4 0.4 0.6
e 0.00001 0.4 0.4 0.4 0.4 0.6
A 1 1 1 1 1 1
Daf 0 1 1 1 1 1
Kr 0.00001 0.0001 1 0.0001 0.0001 1
rf 0.00001 1 1 1 1 1
b 1 10 10 10 10 10
c 1 1 1 1 10 1
H 0.00001 1 1 10 1 1
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M41 ¼

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2664
3775;

M42¼

0 AA12wpEpV AA21wpEpH 0

AA11wpEpV 0 0 AA22wpEpH

AA11wpEpH 0 0 AA22wpEpV

0 AA12wpEpH AA21wpEpV 0

26664
37775;

M43 ¼

0 �cHwf wpBB12EpV �cHwf wpBB21EpH 0

�cHwf wpBB11EpV 0 0 �cHwf wpBB22EpH

�cHwf wpBB11EpH 0 0 �cHwf wpBB22EpV

0 �cHwf wpBB12EpH �cHwf wpBB21EpV 0

26664
37775;

M44¼

Q11 �Y 12wpEpV �Y 21wpEpH 0

�Y 11wpEpV Q12 0 �Y 22wpEpH

�Y 11wpEpH 0 Q21 �Y 22wpEpV

0 �Y 12wpEpH �Y 21wpEpV Q22

2666664

3777775:
ð46Þ

The solution for the homogeneous case is given by
EE11 ¼ 0, or

Ra ¼ R11T 11

S11

: ð47Þ

For the weakly heterogeneous case we perturb this. We
substitute

Ra ¼ R11T 11

S11

ð1þ SÞ; ð48Þ

linearize for small S; and solve for S:

3. Results and discussion

The case of a regular porous medium corresponds to the
limit as rf, e and Kr tend to zero. The case of local thermal
equilibrium corresponds to H tending to zero (or H tending
to infinity with the Rayleigh number redefined, now
expressed in terms of an effective thermal conductivity).
Taking both limits produces the expression

S ¼ � 1

63
7ð4Df H � 5Ef HÞ2 þ 3ð2Df V � 5Ef VÞ2
h i

: ð49Þ

This leads to the critical value

Ra¼ 4p2 1� 64

567p2
7ð4df H� 2:5ef HÞ2þ 3ð2df V� 5ef VÞ2
h i� 	

� 39:48f1� 1:281ðdH � 0:625eH Þ2� 0:137ðdV � 2:5eV Þ2g:
ð50Þ

This is the result obtained by Nield and Kuznetsov [4]. It
shows that the effects of weak horizontal heterogeneity
and vertical heterogeneity are each of second order in the
property deviations and their combined contribution is of
the order of the variances of the distributions for perme-
ability and conductivity (which are here equal to
d2

f H þ d2
f V and e2

f H þ e2
f V, respectively). The effects of verti-
cal heterogeneity and horizontal heterogeneity act indepen-
dently at this order of approximation. (Product terms like
df Hdf V are absent in the last expression.) Since the expres-
sion in square brackets in Eq. (49) is positive definite, the
heterogeneities lead to a reduction in the critical value of
Ra for all combinations of horizontal and vertical hetero-
geneities and all combinations of permeability and conduc-
tivity heterogeneities. The effects of the horizontal
permeability heterogeneity and the horizontal conductivity
heterogeneity are at the first combination step subtractive.

In the general case one has

Ra ¼ Ra0ð1þ C11Hd2
f H þ C22Hd2

pH þ C33He2
f H

þ C44He2
pH þ C12Hdf HdpH þ C34Hef HepH

þ C13Hdf Hef H þ C24HdpHepH þ C14Hdf HepH

þ C23HdpHef H þ C11Vd2
f V þ C22Vd2

pV þ C33Ve2
f V

þ C44Ve2
pV þ C12V df VdpV þ C34Vef VepV

þ C13Vdf Vef V þ C24VdpVepV þ C14Vdf VepV

þ C23VdpVef VÞ: ð51Þ
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By plugging numerical parameter values into an algebraic
expression obtained using Mathematica, we computed the
Rayleigh number coefficients for a few representative cases,
for the parameter values listed in Table 1. The computed
values are given in Table 2. Case 1 approximates the case
of a regular porous medium. For this case the computed re-
sults agree with the analytic formula given by Eq. (50). The
other cases involve representative parameter values.

The results show that certain coefficients are generally
small, and for practical purposes may be set equal to zero.
These are C22H, C12H, C24H, C22V, C12V, C24V and C14. Also
C23H, and C23V, are relatively small. The conclusion is that
the effect of the hydrodynamic heterogeneity of the p-phase
is generally small. This result could be expected. On the
other hand, the thermal heterogeneity of the p-phase can
be quite significant when the thermal diffusivity of the p-
phase is relatively large.

4. Conclusions

We have examined the effects of both horizontal and
vertical hydrodynamic (permeability) heterogeneity and
thermal (conductivity) heterogeneity on the onset of con-
vection in a horizontal layer of a saturated bidisperse por-
ous medium uniformly heated from below using linear
stability theory. For the case of weak heterogeneity we
have carried out an analysis in terms of perturbation quan-
tities representing the heterogeneity. We found that the
effect of such heterogeneity on the critical value of the Ray-
leigh number Ra based on mean properties is of second
order if the properties vary in a piecewise constant or linear
fashion. The effects of horizontal heterogeneity and vertical
heterogeneity are then comparable once the aspect ratio is
taken into account, and to a first approximation are inde-
pendent. A feature of the bidisperse porous medium is that
the thermal heterogeneity of the p-phase can be quite sig-
nificant when the thermal diffusivity of that phase is large
relative to that of the f-phase.
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